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ABSTRACT

Automated assembly of truss structures in space requires vision-guided servoing for grasping a strut when its
position and orientation are uncertain. This paper presents a methodology for efficient and robust vision-guided
robot grasping alignment. The vision-guided grasping problem is related to vision-guided “docking” problems.
It differs from other hand-in-eye visual servoing problems such as tracking in that the distance from the target
is a relevant servo parameter. The methodology described in this paper is a_ hierarchy of levels in which the
vision/robot interface is decreasingly “intelligent.” and increasingly fast. Speed is achieved primarily by infor-
mation reduction. This reduction exploits the use of region-of-interest windows in the image plane and feature
motion prediction. These reductions invariably require stringent assumptions about the image. Therefore, at
a higher level, these assumptions are verified using slower, more reliable methods. This hierarchy provides for
robust error recovery in that when a lower-level routine fails, the next-higher routine will be called and so on. A
working system is described which visually aligns a robot to grasp a cylindrical strut. The system uses a single
camera mounted on the end effector of a robot and requires ouly crude calibration parameters. The grasping
procedure is fast and reliable. with a nmudti-level error recovery system.

1 INTRODUCTION

Computer (or machine) vision, and the problems associated with the field. are familiar topics in robotics. While
solutions and approaches to static problems such as recognition, perception. calibration, and metrology have
flourished. there have been relatively fewer treatimients of dynamic issues such as tracking a moving object and
visual servoing. Only within the past 5 years lias computer technology advanced to the point where the high-speed
requirements of these tasks can be met.

There are two basic problems in dynamic machine vision: object tracking and visual servoing. With tracking,
we are concerned with locating aud tracking one or inore moving targets in one or more images. Applications
are in air traffic control. military operations. and industrial process control. The camera (or equivalent imaging
device) is usually considered stationary and the output is a real-time stream of target locations.

Closely related to tracking is visual servoing, where tracking is used to drive some system parameter to zero.
This could mean moving the imaging device to follow a moving target or guiding a robot manipulator to a goal
position and orientation. lu robotic visual servoing. common tasks include using machine vision as a secondary
position sensor (secondary to the robot joint cncoders) and visual alignment with an object.

Vision-guided alignment can he applied to sueh tasks as “docking™ with an object and grasping an object. In
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Figure 1: Coordination hierarchy of decreasing reliability and increasing speed.

docking procedures, the robot end effector either is itself a docking mechanism or is holding one. The mechanism
is then visually guided to mate with the docking receptacle. In vision-guided grasping, the robot manipulator is
visually aligned with an object so that minimal reaction forces and torques result when the gripper is closed.

Thorough image processing invariably requires intensive computation, which in turn requires time. Visual
servoing, on the other hand, requires a [ast interface between the vision and the robot. We do not generally have
the luxury of thorough image processing when it comes to fast, respounsive hand-eye coordination. These two
needs: rigorous image processing and fast vision updates to the robot are in direct conflict.

To solve this problem. a multi-layered system is presented. This coordination system contains elements of
both slow, thorough image processing and fast. less rugged image processing. The fundamental concept 1s that of
o & o oo o (=]
progressively verifying and taking advantage of more and more assumptions.

The coordination architecture has layers of increasing knowledge at higher levels and decreasing reliability at
lower levels. A diagram of the relationships between the layers is shown in Figure 1. This structure ailows the
necessary assumptions to be verified at higher levels while providing a means for “graceful degradation”™ from

low-level failures. .

1.1 Motivations

A proposed construction of the NASA Space Station Freedom involves a large truss structure composed of 2-5
meter struts and reconfigurable nodes. At the Center for Intelligent Robotic Systems for Space Exploration
(CIRSSE), we are interested in automating the assembly of these struts and nodes. This problem is studied using
a versatile robotic testhed. The CIRSSE testbed consists of:

2 9-DOF robots (6 DOF PUMA + 3 DOF linear-track Aronson platform)

2 robot grippers equipped with force and cross-fire sensors
o 2 force-torque sensors for each robot wrist

a pair of cameras mounted on one of the robot grippers

[ ]

2 stationary cameras

e a laser scanner

The stationary cameras and laser scanner can give rough global pose information of the struts in the assembly
area. These pose estimates are too rough for such operations as grasping or inserting a strut. The arm cameras
provide a means for refining the global pose estimates of struts.
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Figure 2: CIRSSE experimental robot testbed.

Figure 2 shows the CIRSSE experimental robot testbed. Note the camera pair mounted on the left robot.
Although the vision-guided grasping algorithm discussed in this paper uses only one camera, the two cameras on
the arm allow for future research with stereo vision and vision-guided insertion of a strut into a node connector.

2 COORDINATION

Figure 2 shows a flow diagram of the coordination system for strut recognition, visually-servoed alignment, and
grasping. Square boxes represent states, rounded boxes represent operations, and arrows represent conditional
execution flow. All operations start from the Dead state, where little is assumed about the environment. Two
primary flow paths are seen: Grab and Learn. Grab is the “usual” operation of the system, while Learn is a
calibration phase which will be described later in this section.

Note that the strut grasping process only works if there is a single strut in the image. If more than one is
present, the operator must cither select one or adjust the initial pose of the robot such that only one strut is seen.
Once a strut has been found. the program must insure that the strut is roughly vertical in the image (within 20°
from vertical). This is a requirement for the pose estimation technique discussed by Nicewarner.! Once aligned,
if the image-plane width of the strut is unexpected, the radius is estimated using the delta-position technique
discussed later in this section. If the radius is outside of the range for the specific robot gripper, the strut cannot

be grasped and the process fails.

Once we are assured that the camera image contains a valid strut which is roughly vertical, we are ready to
visually servo to align for grasping. Il a circumferential fiducial stripe is visible, the servoing gains are set such
that all 3 translation pose parameters and two of the rotation parameters {rotation about the X-axis and Z axis)
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Figure 3: Coordination system for vision-guided grasping of a cylindrical strut.

are used. If a marker is not visible, the Y-axis trauslation parameter cannot be used, so the servo gains are set

appropriately.

Once the servo process begins, if a failure occurs. the robot returns to a previous position where it saw the
strut last. If the servo fails there, the robot moves to the next previous position, and so on. After .V failures, the

program falls back to searching for a strut in the unage.

The grasp process ends when the gripper successfully closes on the strut. The operator then must specify
what to do with the strut using an external path-planner to place the strut in a desired location or simply move

to the robot's “home™ position.

The flow-diagram representation of the coordination system is an accurate representation but is more difficult
to understand when attempting to convey the basic operation of the system. The coordination system operation
can alternatively be thought of as a series ol phases. These phases are: learn, recognition, alignment, and

approach.
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2.1 Learn Phase

Before vision-guided alignment can begin, the target pose for the strut in the camera space needs to be defined.
The target pose is defined by simply placing the strut in the gripper and noting the pose calculated by the pose
estimator. This procedure is typically done only once as a calibration step whenever the operating conditions
of the robot change, such as camera parameters, camera location, lighting, or strut design. Since this is not a
time-sensitive task, computation restrictions are not necessary for the image processing.

In a typical learn session, the strut is placed in the gripper and the gripper is closed. An image is then snapped
from the camera and the strut is located in the image using the recognition algorithms described by Nicewarner.!
The pose is then estimated and saved to a file which is from then on loaded and used as the target pose for the

strut.

2.2 Recognition Phase

Upon startup. the coordinator assumes nothing about the current image from the camera. First, an image is
snapped from the camera and the centroids (or hlobs) are extracted. The centroid information not only tells the
location of blobs. but also the second monients of cach blob. These second moments can be used to obtain a list
of blobs which are “long and thin.”

Once the long and thin blobs are extracted, collinear hlobs are merged together because the fiducial circumfer-
ential stripes effectively split a strut into a group of collinear cylinders. The merges are then noted as candidate
marker locations, to be later verified.

If no valid struts result from this, the program [fails because there are no struts it can see to be grasped. If
there is more than one strut in the image. the program fails as well because there is no criterion to choose an
appropriate strut to grasp. The program only continues if there is one valid strut in the image.

The information so far can be used to crudely center and align the strut vertically in the image. As stated
before, vertical alignment is necessary for the pose estimation algorithm. This rough alignment is done simply by
calculating the delta movement in the image plane for the marker and strut axis using the information given by

the strut recognition routine.

The next verification made is that the radius of the strut is within an expected range. The radius of the strut
can be estimated by observing the change in the image induced by moving the robot a certain distance towards
the strut. If the radius projected onto the screen at the first position is ry and the projected radius at the second
position is 2, the radius R can be determined by similar triangles.

R _ 1

n T .
R _ ra 5
dy - f (2)

where f is the focal length of the camera and d;. dy are the distances from the strut to the camera focal point at
the two positions. Recognizing that da = di + Ad, we can solve these equations for R,

_ Ad rary
R_T("'J_"l) (3)

Therefore. we can use the calibration of the robot to move a given distance and calculate an estimate of the
strut’s radius. If this strut is outside of an expected range. the program fails because the object most likely is a
bogus object.
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Figure 4: Scan lines composing a typical scan region.

Ouce the strut has been verified. the critical processing areas of the image are chosen. These critical areas are
called scan lines and are processed with a 1-D edge detector for rapid pose estimation. Five scan lines comprise a
scan region (see Figure -1). These scan lines are either vertically or horizontally oriented to provide fast access to
the critical areas of an image by a computer. Two scan horizontally along the top and bottom of the screen for
edges. Two more scan vertically across the top and bottom edges to detect the end of the strut. The last scan
line vertically crosses the fiducial marker (if present).

The scan line positions and scan ranges are chosen to minimize the noise that might be encountered during
the alignment phase. The top and bottom horizontal scan lines are chosen to be as far apart as possible to ensure
more accurate pose estimations. The top and bottom cross scans are used to ensure that the top and bottom
horizontal scans are sufficiently far from the end of a strut (if visible).

2.3 Alignment Phase

The alignment phase begins by rapidly processing the scan lines for edges, or critical points. There are five critical
points: 2 on the top horizontal scan line, 2 on the bottom horizontal scan line. and 1 representing the mid-point
of the edges across the fiducial stripe. If some unexpected noise is encountered while scanning for critical points,
the scan ranges and scan line positions can be adjusted. It can be shown! that 3 of the 6 strut pose parameters
can be determined from only 3 critical points. The pose of the strut is computed relative to the camera. The 3



pose parammeters are:

1. R, - the tilt angle of the strut axis out of a plane perpendicular to the optical axis.

2. R. - the clockwise rotation of the strut about the optical axis, relative to the image plane y-axis.

3. T. - the horizontal displacement of either the strut marker or the center of the strut from a vertical plane
through the optical axis.

4. T, - the vertical displacement of the strut marker (if visible) from a horizontal plane through the optical
axis.

T. - the distance from the caniera lens to the center of the strut along the optical axis.

on

Note that R, is not available since the strut is rotationally symmetric. T, is only available if a stripe is visible;
otherwise, only four parameters are used. Effectively, if no stripe is seen, the strut will be grasped arbitrarily

along the axis.

For the alignment phase. the robot controller servoes all the parameters except T. to zero. The distance is
servoed to an optimal distance from the strut. This distance is determined primarily by the focal depth and field

of view of the camera.

2.4 Approach Phase

Ideally, the alignment phase could be continued all the way to the target pose. Because the image detail increases
as we get closer, the pose estimates become more nccurate, so we should expect our best performance when the
strut is grasped. In actuality, although the pose estimate errors do indeed decrease as the distance decreases, the
sensitivity of the critical point extraction process increases. As the strut projection becomes larger in the image,
unavoidable minute “jerks™ in the robot’s movements can cause the feature extraction process to fail.

To solve this problem. the visual servo process halts when the last pose estimate is the “best.” From there,

the robot moves “blindly™ to grasp the strut. Weighing the relative costs of completely servoing versus the loss

in fault tolerance introduced by blind motion is discussed by Nicewarner.'

3 IMPLEMENTATION

The vision-guided grasping systems discussed in this paper was successfully implemented with the CIRSSE ex-
perimental testbed shown in Figure 2. The layout for CIRSSE computing resources used in this paper is shown
in Figure 5. There are three primary platforms: the UNIX host computer, the vision VME cage, and the motion
control VME cage. The platforms are interconnected via an ethernet network.

A Sun 1 computer is used as the UNIX host and executes the high-level coordination software. The vision

VME cage contains:

e 1 Motorola MV-117 processor
e [ Motorola MV-135 processor

o 3 special-purpose Datacube DSP boards
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Figure 5: CIRSSE testbed resource layout.

o interface to laser scauner
The motion control VME cage contains:

2 Motorola MV-147 processors

4 Motorola MV-135 processors

interfaces to grippers aud force-torque sensors

interfaces to Unimation controllers

L

Both VME cages are running under the Wind Rivers VxWorks real-time operating system.

The uecessary high-speed communications hetween the vision and motion control cages was implemented using
BSD UNIX datagram sockets as opposed o using standard stream sockets. Stream sockets buffer data packets
and insure reliable transmission. Datagram sockets have no such features and as a result are much faster yet
less reliable. In our implementation, data packets are lost on occasion, in which cases the trajectory generator
assumes the pose of the strut relative to the camera has not changed. This could potentially lead to untimely
jerks in the robot motion when the transmissions are restored. However, since consecutive pose estimates are
relatively close together, no adverse elfects are observed.
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4 RESULTS

Several experiments were performed to evaluate the performance of the vision-guided grasping system presented
in this paper. In one experiment, white cylinders of various diameters (8§ mm, 16 mm, 22 mm, and 38 mm) were
used to test the pose estimation process with respect to the robot calibration. The results of this experiment are
discussed by Nicewarner.!

Another set of experiments performed involved finding and grasping a strut, moving to “home” position, then
placing the strut randomly and repeating the process. This is perhaps the best measure of performance for our
system because it couveys the reliability and repeatability of the process. With the completed system, around 100
trials were made. All were handled properly, meaning that if the strut was not visible in the starting image, the
program exited and il the strut was visible. is was successfully grasped.

5 CONCLUSIONS

A multi-layered vision-guided grasping system has been presented which successfully resolves the conflict between
v [~} o O v
rigorous image processing needs and rapid vision updates to the robot. This system contains elements of both
slow, thorough image processing and [last, less rugged image processing. The fundamental concept is that of
progressively verifying and taking advantage of more and more assumptions. The coordination architecture has
layers of increasing knowledge at higher levels and decreasing reliability at lower levels. This structure allows
the necessary assumptions to be verified at higher Jevels while providing a means for “graceful degradation™ from
- i o o

low-level fatlures.

A two-level vision system for vision-guided grasping has been discussed which handles both high-level strut
recognition and low-level rapid strut pose estimation. The recognition is performed based on the moments of
inertia of the strut segment projections. The rapid pose estimation method described is unique for cylindrical
objects. It exploits the fact that only 4 edges on parallel scan lines are needed to estimate 4 of the pose parameters.
With the addition of a simple fiducial stripe around the strut, we can estimate the 3 pose parameters necessary
for grasping the strut in a particular location along its axis. The pose estimation runs easily at frame-rate and is
reasonably accurate under a wide range of operating conditions. The method is relatively insensitive to camera
model uncertainties and can be easily calibrated in a one-step procedure.

The overall design is modular so that lower imodules can be changed without significantly effecting the oper-
ation. This means that the vision-guided grasping system can be ported to a different robot system and operate
in a different environment. In addition. the multi-layered architecture provides robustness and fault-tolerance—
qualities that are demanded of space-worthy systeins.
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